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Insight Beyond Numbers:
The Impact of Qualitative Factors on Visual Data Analysis

Benjamin Karer, Hans Hagen, and Dirk J. Lehmann

Abstract—As of today, data analysis focuses primarily on the findings to be made inside the data and concentrates less on how those
findings relate to the domain of investigation. Contemporary visualization as a field of research shows a strong tendency to adopt
this data-centrism. Despite their decisive influence on the analysis result, qualitative aspects of the analysis process such as the
structure, soundness, and complexity of the applied reasoning strategy are rarely discussed explicitly. We argue that if the purpose
of visualization is the provision of domain insight rather than the depiction of data analysis results, a holistic perspective requires a
qualitative component to to be added to the discussion of quantitative and human factors. To support this point, we demonstrate how
considerations of qualitative factors in visual analysis can be applied to obtain explanations and possible solutions for a number of
practical limitations inherent to the data-centric perspective on analysis. Based on this discussion of what we call qualitative visual
analysis, we develop an inside-outside principle of nested levels of context that can serve as a conceptual basis for the development of
visualization systems that optimally support the emergence of insight during analysis.

Index Terms—Visualization, Reasoning, Qualitative Aspects

1 INTRODUCTION

In the social sciences, a number of open questions are vividly discussed,
such as whether raw and unbiased data actually exists and whether
neutral and objective analysis is actually possible and how it has to
be defined (e.g. [19]). Asking this kind of questions is important as
the answer has a considerable impact on how a field understands itself.
Yet, there typically is no absolute answer. Instead, there is a plethora
of positions, each with its own implications on how research within
the scope of this position has to be conducted. For example, there
is an interesting collection of literature discussing issues with purely
data-centric analysis from a socio-technological perspective (e.g. [S]).
For visualization as a discipline, such an existential question might be
to define what actually constitutes insight. Although it is a common
argument that the mission of visualization is to support its users in
obtaining insight, there is no commonly accepted definition about what
insight actually is [9] and the sensemaking processes applied to obtain
insight are still not well understood [42]. As visualization as a field has
reached the maturity to ask this kind of self-defining questions, it also
has advanced enough to critically reflect and question its approaches to
accomplish its mission.

In this paper, we critically reflect visualization’s current perspective
on insight. Our reflection is based on the premise that all data analysis
is always directed towards obtaining insights into a domain — either to
achieve a structural understanding of states of affairs observable within
the domain or to enable an informed decision within the context of this
domain. The emphasis here is clearly on insight into the domain. Yet,
we find that the notion of insight that is commonly applied in visualiza-
tion is not referring to insight into the domain but rather restricts itself
to insights into how to read and interpret the visualization correctly (e.g.
by legends, explanations, guidance etc.) or to insights about properties
of the data (e.g. reading off visualized results of quantitative analysis).

Today’s data analysis is usually conducted in a context-free man-
ner. Hence, although the computationally obtained results are valid,
their interpretation is up to a human analyst. Visualization supports
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this analysis by providing graphical representations of the data and
of analysis results. Yet, this presentation typically does not involve
additional domain information that is not encoded in the data or the
computed results. Regarding the search for insight into the domain, we
identify two major issues with this approach: First, without any context
information, there is no way to be certain that the analysis conducted
is actually relevant to the problem or that a computationally valid and
sound solution actually captures a relevant feature of the data. Second,
as long as there is no reflection of the obtained knowledge about the
data back into the domain, one can never know whether this knowledge
is applicable, relevant, or even valid in the whole domain.

For better intuition, let us provide an example:

Consider an analysis of the gothic-style architecture of medieval cathe-
drals in western Europe based on a collection of photographs or con-
struction plans. To allow for numerous large openings in the walls that
could be filled with glass windows, architects constructed a complex
network of arches in order to concentrate the weight of the ceilings and
walls onto a small number of support elements. As a result, a typical
pattern in gothic-style medieval walls is the spandrel — a triangular area
of which one side is part of an arch. Identifying the spandrel to be a
pattern in the architecture data therefore is a sound and perfectly valid
result of data analysis. However, spandrels are not defining or even
characteristic elements of gothic-style architechture but only a side-
effect of the usage of arches as support structures to allow open spaces
for more windows. Hence, gothic architecture is not about spandrels, it
is about arches. Yet, this conclusion is not evident from the data alone
— it can only be reached by considering the patterns found in the data
within the context of the domain of architecture and construction.

Therefore, to offer the analyst the holistic perspective necessary to
reflect insights into the data with respect to the domain and context,
visualization needs to go beyond computing and displaying numerical
results. In particular, visualization has to

1. offer means to qualitatively evaluate findings resulting from the

analysis process in their appropriate context

2. offer ways to map obtained insights into the data back to the

domain in order to determine their implications for the domain
Only findings that can be validated against the domain — either empiri-
cally or by formal proof — can become insights into the domain.

This paper is divided into two parts. Each of them discusses one of
the above postulates in more detail. In the first part, we review related
work in order to understand what aspects contribute to an insight to be
found in visualization. This review motivates what we call qualitative
visual analysis — an explicit consideration of context information in
the visualization and in the analysis process for the qualitative evalu-
ation of analysis findings. Towards a better understanding how such
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considerations can support the analysis process, we discuss a num-
ber of limitations of purely data-centric analysis and how they can
be alleviated by additional context information. In the second part,
we deepen the discussion on how reasoning crosses the boundaries
between different levels of context. To this end, we develop an inside-
outside-principle of qualitative visual analysis that allows us to propose
possible approaches for the integration of context information into a
visualization.

2 RELATED WORK

Discussing the value of visualization for practitioners, Fekete et al.
emphasize visualization’s capability to support identifying models as
a starting point for analysis [17]. They argue that automatic analysis
and (exploratory) visual analysis answer different analysis questions
and thus should attempt to support each other. The combination of
visual and automatic data analysis is also the central idea of visual
analytics [31]. Sacha et al. propose a high-level model of knowledge
generation with visual analytics formalizing the obtainment of knowl-
edge as a cyclic process of repeated automatic data processing and
human reasoning [46]. Andrienko et al. interpret visual analytics as a
goal-driven process whose result is the construction of a mental model
of the data [3]. More detailed discussion in this direction requires
mappings between the graphical display, a person’s understanding of
this display, the available models for reasoning, and the phenomenon
represented by the visualization. Vickers et al. apply category theory
and semiotics to propose a theoretical framework formalizing this set
of connections [61].

We argue that models like these can serve as guidance for the discus-
sion of analysis and reasoning processes for visualization applications
in order to establish a certain degree of standardization and compara-
bility across different papers. In order to apply those models correctly,
it is important to understand the basic concept they all share: the idea
that the analysis process leads to the obtainment of insight. In the
following discussion, we therefore review how insights are seen within
visualization as a field, what kinds of insight can be obtained during
the process of visual data analysis™, and what aspects contribute to
the obtainment of insight.

A necessary prerequisite for applying such models is to specify what
exact purpose a given visualization is made for. As Card, Mackinlay,
and Shneiderman phrase it, “the purpose of visualization is insight,
not pictures” [6] (p. 6). Although insight might be the most common
answer to the question what visualization is for, it is typically not very
specific as it is generally hard to specify what this insight would actually
be. Chen and Edwards identified a collection of schools of thought
to help structuring the different opinions on what is the purpose of
visualization [10]. According to them, other directions than the insight-
oriented approach tend to answer this question in terms of supporting
thought and general cognitive processes (e.g. [6]), communicating
information (e.g. [14,23]), or optimizing the visualization, e.g., with
regard to the amount of data to be analyzed or the efficiency of the
reasoning with the visualization in terms of the time saved [11, 12].
According to Chen and Edwards, most authors, however, follow a more
pragmatic approach and motivate the purpose of a visualization by its
utility for the specific application. We take an alternative viewpoint,
identifying the purpose of a visualization not with its specific task
within an analysis or other kind of setup but rather with the aims
associated with the setup itself and how well the visualization fits this
setup by supporting these aims. As the further discussion indicates, this
“quality of fit’™R can be assessed by characterizing the different kinds
of insight a visualization application allows its users to obtain.S”

21

Unfortunately, there is no clear and commonly agreed upon definition
what actually constitutes an insight in visualization. Chang et al. pro-
pose two different characterizations [9]. The first is the notion of a
sudden “Aha”-effect™, which is one of several approaches to treat
insight in cognitive psychology. The second one is a gradual increase
of knowledge and appears to be the one more commonly used implicitly

Insight

and informally within the visualization community. Saraiya et al. char-
acterize insight as individual findings in the displayed information [49].
Other authors extend this definition by the requirement to involve rea-
soning. In their knowledge generation framework for visual analytics,
Sacha et al. specify insight as the generation of additional knowledge
by interpreting a finding in combination with domain knowledge [46].
Yi et al. conduct a literature review on the processes how people obtain
insight. Their findings can be summarized as getting an overview, then
adjusting the view to identify patterns and matching these patterns with
existing knowledge in order to draw conclusions [65]. North extends
these notions of insight further, characterizing insight as being complex,
deep, relevant, unexpected, and qualitative [40]. Ishack et al. study the
effect of users’ domain knowledge on the insights reported in visual
data analysis [29]. Relating their findings to the notion of distributed
cognition, they conclude that insights are neither generated in the user’s
head nor are they hidden in the data but instead are constructed during
the user’s interaction with the data visualization. Although they differ
in the details, all the discussed definitions agree in the following:5®

Definition: (Visualization) Insight
An insight marks a step forward in the interpretation and analysis in
the form of a change of the user’s knowledge or understanding.

Thereby, an insight necessarily involves the individual viewer.
Rather than being an object or entity to be mined from the data, an in-
sight is a step of progress of certain significance, an emergent property
of the visual data interpretation and analysis process. It can therefore be
understood as a function on the viewer’s knowledge and understanding.
While its execution is clearly a cognitive action of the viewer, it is
not as clear how this function is generated. In visualization, there are
currently two major directions of thought in this regard which Chen
and Edwards refer to as weak and strong insightism [10]. Weak insight-
ism requires the viewer to actively incorporate additional knowledge
into the interpretation of the visualized information in order to obtain
insight. Strong insightism suggests that insight can be directly provided
by the visualization.3” Towards a better understanding of how insight
emerges in visual data analysis, we need a more detailed discussion
about the kinds of insight that can be obtained.

2.2

In their 1996 article on External Cognition, Scaife and Rogers discuss
reasoning with data visualization regarding the analysis of data with
respect to a mental model [50]. Cleveland and McGill define graphi-
cal perception as the act of decoding the quantitative and qualitative
information encoded in visual data representations [13]. Quantitative
information can be obtained from within the data context — they con-
stitute of numerical or otherwise deterministic values and properties
that can be derived from this information. Qualitative observations also
involve additional levels of context.

User studies reveal that global tasks involving inference from a
number of observations are harder to perform then local tasks where
information can be read directly from the depiction, especially if the
tasks involve knowledge from outside the data context [22,44]. Casner
applies a similar argument to motivate the transformation of cognitive
tasks into perceptive tasks that provably yield the same results but
are substantially easier to perform [7, 8]. Trafton et al. describe three
different kinds of insights to be obtained during the process of analyzing
visualized data™®, requiring increasingly complex reasoning [58, 59].
Because their observations are based on findings from several empirical
studies, we adopt this distinction and identify the types of insight to be
obtained during the process of visual data analysis™® as follows:S8

Insight and Reasoning

Definition: Insight into the Visualization
Insights that determine how the viewer interprets the visualization.

This is the kind of insight involved with understanding the displayed
information either by the viewer’s own visual literacy or by mapping
information provided by legends or manuals to the display.>3

Definition: Insight into the Data
Insights affecting the viewer’s knowledge about statistical and other
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structural information about the data.

Insight into the data reveals information such as relationships, pat-
terns, or trends. This is the kind of information that can be obtained
from purely quantitative data-centric analysis without further interpre-
tation of the obtained results. The analysis yielding this kind of insight
can thus in principle be done completely automatically. Once viewers
understand the structural aspects of the data, they can attempt to draw
more complex conclusions from the observations.S8

Definition: Insight into the Domain
Insights affecting the viewer’s understanding of the domain.

These insights are obtained by reflecting and interpreting the findings
observed in the visualization with respect to the viewer’s knowledge
about the domain under investigation. As a consequence, this ty}ge of
insight directly affects the viewer’s understanding of the domain.>®

In the above formulation, the three categories of insight match the
three-level model proposed by Ware [63]. Regarding the mapping of
high-level tasks to these categories, Nazemi and Kohlhammer associate
the first level with search tasks, the second with exploration, and the
third with the analysis process [39]. Where the first and second category
are concerned, Smuc et al. report results from a user study revealing
that while insight about the data can only be obtained after insight about
the visualization, viewers only need to understand those parts of the
visualization that are relevant for the insights they intend to obtain [54].
This observation emphasizes Kosslyn’s remark on the importance of
pragmatics in visualization: visualization performance depends on how
well it supports its purpose [35].

Remarkably, all of these models have in common that reasoning
about the data with respect to domain information is regarded as the
most complex part of the analysis process. The understanding of insight
in visualization as discussed above commonly refers to insight about
the data (e.g. North [40]) or into the domain (e.g. Sacha et al. [46]).
Yet, the discussions of what kind of insight can be found in specific
visualization applications rarely apply those theoretical frameworks
and tend to stick with the presentation on what kinds of insight into the
visualization are required to obtain certain insights into the data. Of
course, it is hard to assess how users map the insights about the data to
their domain knowledge. Still, we have to remark that if it cannot be
explained exactly how a given visualization is meant provide to insight
into the domain, this is probably because it simply does not do so. Of
course, the visualization may still support its user in obtaining those
insights by deriving them from the insights into the data offered by
the visualization. We only suggest to be careful when discussing what
kinds of insight a visualization actually provides or only supports in
order to prevent promising too much. Towards a better understanding
of how insight into the visualization and into the data can be related to
the domain, we now turn to a discussion of levels of context involved
with obtaining insights into the domain.

2.3 Context

The interpretation of data depends on the context. Data without context
may well also be free of meaning. To support reasoning, a visualization
should thus also reflect available context information [5]. In his Views
on Visualization, Van Wijk proposes different high-level models for the
visualization process [60]. One of his key findings is that the visualiza-
tion itself — not only the interpretation by its viewer — is subjective: It
does not only depend on the data but also on the algorithms and data
structure used as well as other factors determined by the programmer.
Remarkably, this finding generalizes to automatic analysis. We there-
fore define the information that can be learned from data processing as
the data context:R?

Definition: Data Context
The data context contains all information that can be obtained from the
raw or processed data by read-off without further interpretation.

The conclusions drawn from analytical reasoning do not only de-
pend on the data context. For example, the ability to understand the
information encoded into the graphical display correctly depends on
the viewers’ individual skill and experience. These factors contribute to

an individual user context.®” Pohl and Doppler conducted an extensive
literature review of different theoretical approaches to the explanation
of sensemaking processes and an empirical user study investigating
whether these techniques can be applied to visualization [42]. Among
other interesting findings, they observe that the reasoning strategies
applied to draw conclusions from the displayed information are highly
dependent on user-specific aspects such as individual skill, experience,
and background knowledge. Similar findings are reported by other
studies. Ishack et al. recognized that viewers with more domain knowl-
edge tend to provide more sophisticated reports applying their domain
knowledge to evaluate their findings in the data [29]. Sheidin et al.
report that character traits influence performance in working with time
series visualization [52]. These results match with earlier findings
by Petre and Green who recognized that obtaining information from
visualizations also depends on the users’ experience [41]. Other em-
pirical evidence shows that not only the users’ experience but also
their general background knowledge can benefit the analysis process,
especially knowledge about the patterns to search for in a specific vi-
sualization [32]. Regarding the design and creation of visualizations,
it has been found that integrating users’ prior knowledge into a visual-
ization and thus allowing them to directly reflect their prior knowledge
with respect to the data benefits recall and comprehension, even if the
users only possess little prior knowledge on the data set [33].57

Definition: User Context
The user context determines the influence of the user’s background on
the interpretation of information in the data context. This includes
but is not limited to factors such as visualization literary, domain
knowledge, experience, and personal reasoning strategies.

While the ability to obtain information from the data or its visu-
alization depends mainly on the data and user context, the question
what the user will attempt to conclude from the observations depends
heavily on the analytical task to be solved and the domain of interest
in which the analysis is conducted.®? This is also a result of a study
conducted by Streeb et al. who investigated the arguments of a range
of visualization practitioners from different disciplines on why they did
(or did not) apply visualization [56]. They found that most arguments
were influenced not only by the data and the user, but also by the task.S’

Being directly concerned with the solution of specific low-level
or high-level analysis questions, task-based design primarily captures
the analysis context. In this regard, a crowdsourcing study reports
that the same visualization performs differently in the contexts of
different tasks [48]. From the opposite perspective, this is reflected by
different interaction patterns users of visual analytics applications show
while performing different tasks [21] and an observed large impact
of domain expertise on interaction patterns and report detail [29,41].
These findings suggest to dynamically adapt the visualization to the
analysis and the user context. In this direction, Golemati et al. proposed
a context-adaptive visualization environment that extends the typical
focus of automatic visualization on the domain and data by an explicit
consideration of user profiles and preferences [20]. In the intelligence
sector, user models for adaptive visualization have been reported to
support distinguishing relevant from non-relevant information which in
turn allows optimizing relevance-based visualizations [1].

Definition: Analysis Context
The analysis context determines the influence of the analysis aim and
task on the interpretation of information. In a multi-stage analysis
process or in a process involving different tasks to perform, this context
may change frequently.

The interpretation of information being found in the data or in a
visualization depends heavily on the domain under investigation.R2
It is therefore common good practice to tailor visualizations to the
domain [38,45,51]. As a result, there is a plethora of techniques
trying to incorporate the domain’s perspective into the design. Tory and
Moller point out expert interviews to be useful especially in the early
phase of design but also remark that they should be complemented
by user studies evaluating the resulting application against the design
goals [57]. Understanding of the domain context can be obtained
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for example from involving users in participatory design, applying
structured interviews [51, 53] or by field studies [15,24,26]. Domain-
analysis is a specific technique useful when working in environments
with existing software solutions [16]. Task-oriented design aims at
the characterization of analysis tasks and their decomposition into
interaction workflows [2, 64].

Definition: Domain Context
The domain context specifies the domain’s influence on the interpreta-
tion of information in the data context.

A holistic perspective on data analysis benefits from synergies be-
tween data-centric and user- or task-centric considerations [43]. We
feel that, despite the significant added value of such a perspective, the
qualitative aspects of data analysis are underrepresented in the dis-
cussions of visualization systems. Frameworks attempting to explain
the effectiveness of visualization and visual analytics do exist but are
rarely explicitly applied to explain a visualization application or even
to motivate design choices.

3 QUALITATIVE VISUAL ANALYSIS

Automatic analysis approaches relying on data processing can necessar-
ily only yield results that are intrinsic to the data. In visual data analysis,
results can instead also be inferred by interpreting the data considering
additional knowledge from outside the data context. This interpretation
enriches the available quantitative information by a context-specific
valuation and thereby translates it into a qualitative representation of
the information that is applied for reasoning about the data. It is the
interpretation that makes the viewer consider a value high or low, a
point cloud dense or sparse, or a developing trend positive or negative.
Interpreting the displayed information with respect to knowledge from
outside the data context in order to translate the available quantitative
information into a qualitative representation>® therefore is an essen-
tial part of data analysis and is commonly performed by an analyst
reasoning about the displayed information. However, it can also be
predetermined by the assignment of fixed interpretations to certain
configurations and values of parameters and variables.

In the above discussion, we have seen that a collection of different
levels of context contribute to the interpretation of the information
depicted in visualizations and that there are different types of insight
to be obtained. Relating the types of insight with the levels of context
they involve, we can explain the difference in complexity of obtaining
insights about the visualization, the data, and the domain as the result
of the involvement of additional levels of context. Following this
approach in the opposite direction describes what kinds of knowledge
from outside the data needs to be incorporated into the analysis process
in order to obtain insights of a specific type.

The kind of reasoning we describe here results in a descriptive model
of the observations reflecting the behavior of the data. It is based on
principles, rules, and predictions rather than only on observable facts.
The insights obtained in such a model define an adequate and accurate
description of the analyzed data and its interpretation with respect to
the inherent data context, the analysis context determined by the task,
the analyst’s individual expertise, and the general domain background.
It is this kind of reflective and interpretative reasoning that forms the
transition of insights into the data into the conclusions that constitute
insight into the domain. To better distinguish this kind of reasoning
from those parts of the analysis process that yield insights into the
visualization and into the data, we propose the following definition:

Definition: Qualitative Visual Analysis
Qualitative visual analysis answers the questions for observable
principles independent of quantitative factors as well as for the
interpretation of observations with respect to the relevant context.

Qualitative visual analysis is therefore primarily concerned with
the process and the results of reasoning about what is depicted and
perceived within a visualization. Compared to today’s dominant fo-
cus on insight into the data, it constitutes an additional perspective,
broadening the scope of the discussion by considerations how exactly
a visualization is meant to support insights into the domain and how

those insights are to be obtained by a viewer. Current literature on
visual data analysis tends to discuss these aspects only implicitly — if
they are covered at all. This is especially true for those applications
that consider visualization only as a tool for the communication of the
results of computational analysis rather than as a means to support the
actual analysis. Our impression is that this view is especially prominent
in the wide spread applied areas of Data Science, Business Intelligence,
and Industrial Analytics. Visualization as a field of research instead
is aiming to enable obtaining insights into the domain. We argue that,
being a central aspect of visual data analysis, the path to domain insight
should be discussed much more explicitly in visualization literature.

Especially since the questions asked by qualitative visual analysis
are quite complex, such a discussion should be grounded in a solid
mathematical foundation. In order to frame the scope of such a dis-
cussion, we propose an orientation along four principles that we name
comprehension, validity, precision, and interpretation:

Comprehension
A discussion of qualitative visual analysis should point out exactly
what observations there are, how they are related to the data, and how
they are interpreted and evaluated. Being primarily concerned with
inferred rather than computed or measured properties of data does
not automatically mean to introduce ambiguity or arbitrariness. Of
course, there remains a certain degree of subjectivity in the process
of interpretative analysis, no matter whether it is introduced by the
designer of an automatic analysis procedure or by the analyst evaluating
and interpreting the data’s representation. Yet, despite this subjectivity,
the individual analytical reasoning relies on logical considerations and
is contextually framed by the data, the user’s background, the analysis
question, and the domain. Therefore, the provenance of insights being
obtained during™® qualitative visual analysis can and should be assessed
in terms of a comprehensible inference structure. Other than explaining
how insights are obtained, the comprehensibility provided by such an
inference structure will also make it much easier for other analysts to
reproduce or falsify analysis results.

Validity
Drawing conclusions requires the application of logic. Hence, the
reasoning strategy being applied can be described exactly by a proper
logical calculus or similar kind of inference system. Therefore, it is
possible to precisely determine whether the conclusions drawn are
correct with respect to this strategy. Qualitative visual analysis should
therefore critically reflect the provenance of insights being obtained
and analyze their correctness within the applied reasoning structures as
well as the soundness of the reasoning structures themselves.

Precision
There is a common misconception regarding qualitative descriptions as
imprecise or otherwise not exact. As a consequence, imprecise state-
ments of a form like “A behaves somewhat like...” or “there seems to be
some regularity in B” are often excused as being “qualitative descrip-
tions”TR, However, they are not — at least not in the sense of qualitative
analysis. The idea of qualitative visual analysis is not to prefer vague-
ness over exactness. What can be measured, should be measured — with
the condition that the measure applied must be semantically meaningful
with clear implications for the analysis result. Statements in qualita-
tive visual analysis should be formalized by predicates or functions
in formal logic. As a rule of thumb, a valid observation in qualitative
visual analysis is completely describable in terms of a clear provenance
structure based on valid conclusions made in a logically sound infer-
ence structure. Consequently, valid observations in qualitative visual
analysis are exact and precise logical statements.

Interpretation
Qualitative visual analysis is not only concerned with reasoning about
data but also with interpreting the conclusions drawn with respect to
the analysis question and the domain context. To this end, it explicitly
allows a valuation of observations and conclusions. Such a valuation
can, for example, be established in terms of suitable logical predicates.
It is, however, essential to properly ground the valuation in the contexts
of the user’s knowledge and the analysis task. The user’s background
primarily determines how the displayed information is being interpreted
in terms of visual literacy and visualization understanding, whereas
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the analysis context drives the decision on what is considered relevant.
Insights into the domain cannot be obtained without interpreting the
observations with respect to their meaning for the domain. In any case,
every interpretation is a result of reflecting observations and conclusions
in a proper context. Discussions of qualitative visual analysis therefore
should investigate these interpretations in detail and reconstruct which
aspects of which level of context contribute to a certain interpretation.
As a result, interpretations become explainable and therefore can be
presented with the same formal rigor applied to conclusions.

Although the above considerations strive quantitative aspects like
precision or uncertainty and human factors such as perception and
comprehension, these factors are not of central concern for qualitative
visual analysis. Rather than on what can be seen and perceived, the
focus of qualitative visual analysis is more on how this information is
being interpreted and what conclusions can be drawn from it. Hence,
we need to consider an additional perspective, complementing the
discussion of quantitative and human factors:

Definition: Qualitative Factors in Visualization
The investigation of qualitative factors in visualization is concerned
with the reasoning processes and mechanisms governing the emergence
of insight from visual data analysis independent of quantitative or
human factors.

As an example for the importance of such a discussion, consider
a flawed analysis process. Systematic errors in the analysis process
or applied reasoning models have a strong impact on the analysis re-
sults. In the extreme case, such flaws render the analysis result useless.
For this reason, we argue that the consideration of qualitative factors
in visualization should dedicate considerate effort to assessing the
logical soundness of analysis workflows and the applied reasoning
strategies. Other directions for the discussion of qualitative factors
include considerations on reasoning complexity, or possible interpre-
tations of displayed content. In the following, we demonstrate how
considerations on qualitative factors in visualization can help to ad-
dress a number of problems that are inherent to today’s predominant
data-centric approach to visualization and visual data analysis.

4 APPLYING QUALITATIVE VISUAL ANALYSIS TO ALLEVIATE
LIMITATIONS OF PURELY QUANTITATIVE ANALYSIS

In this section, we review a collection of limitations inherent to today’s
predominant quantitative and data-centric approach to analysis and
present directions to alleviate these issues inspired by qualitative visual
analysis. Although well known, the issues we discuss here are rarely
discussed in conjunction or with respect to their general implications.
Discussions on these issues typically focus on specific problems they
pose for visualization’s several sub-disciplines. We collect the several
limitations in a concise summary and also point out possible solutions
based on qualitative visual analysis. To this end, we discuss each
limitation following a fixed structure: First, we describe the problem.
Where necessary, we provide an example for better intuition. We then
identify reasons for the respective problem related to the four levels
of context identified above. In the final step, we leverage this analysis
to provide a possible solution. We discuss one of these solutions
with respect to the four principles of qualitative visual analysis to
demonstrate how the concept can be applied determine the expected
utility of design approaches.S!

4.1 Missing Essential Domain Characteristics

Qualitative aspects and properties often can only partially be reflected
by quantitative measures. Sometimes, this is even impossible. Al-
though there might be indicators allowing an indirect description, the
actual object of discourse cannot be reflected completely by quantita-
tive data. Especially if those aspects determine the domain’s essential
characteristics, purely data-centric analysis might reveal insight about
the data but not about the domain. In practical applications working
with real-world data, the interpretation of data is often being introduced
into the analysis process from outside the data context. In this case, the
meaning of observations cannot be concluded from the data.

As an example, consider the following thought experiment: Take a
sample of boiled potatoes and estimate their quality by gathering some
information on serving temperature, boiling temperature, and the time
spent boiling in the pot. Now, let there be strong statistical variations in
two categories with clusters in low boiling time and high temperature
and high boiling time with low boiling temperature. As a result, the
(dependent!) serving temperature only varies slightly and is almost
perfect for every dish. Still, there is a wide variety in the costumers’
ratings. Why? Because despite having the same serving temperature,
the clusters actually indicate that the one group of potatoes is still raw
while the other group is overcooked. Although it is essential for the
domain (food quality), this interpretation is not part of the data but
introduced from the outside during analysis. This kind of interpretation
often only becomes relevant during the data analysis and thus after data
generation. It therefore cannot be part of any raw data being measured
or sampled without further processing. Yet, it is an essential aspect of
the domain’s characteristics.

Reason: In such a setup, the domain is characterized by qualitative
properties. These properties rely on interpretations from the user,
analysis, and domain context. Although they can be explained in terms
of certain equivalence classes in the data, these classes are not part of
the data context but are introduced as data interpretations.

Solution: One possible solution attempt is to carefully study the
domain context in order to identify relevant equivalence classes either
before or during the analysis. Adding these equivalence classes to the
data as metadata allows for a semantically meaningful classification
of data items that reflects the presence of the identified characteristic
domain properties in the data.

4.2 Missing Expression of Meaning

Distance measures are frequently used to find and describe structures
like clusters in the data. These structures are defined solely from within
the data context and typically rely on a notion of density or sparsity.
Hurley and Rickard formalize intuitive properties of sparsity and ana-
lyze how well these properties are captured by sparsity measures [28].
They recognize that only few sparsity measures actually capture all
identified properties. It therefore can be doubted that the interpretation
of sparsity is as intuitive as it might appear. We emphasize that this is
indeed a concern as it directly influences the expressiveness and validity
of sparsity-based findings for the domain.

As an example, consider a bunch of differently shaped and sized
ellipses (i.e., local distributions, patterns) and let them be clustered by
either the Euclidean distance of their centers or the cosine similarity of
their principle axes. The question now is, which distance measure is
more expressive. To answer this question, we need to understand what
the respective distance measure tells us about the domain. This question
cannot be answered from inside the data because the interpretation
requires domain knowledge. This problem has a significant implication
for analysis practice: Without determining the domain interpretation
of the distance measures we apply, we can impossibly say whether the
structure they imply for the data is indeed characteristic for the domain.

Beside the fact that it remains unclear, which of those measures
detect semantically relevant structures for the domain, Kleinberg de-
scribes in his impossibility theorem [34] that sometimes a semantically
relevant measure might not exist at all. Thus, just by looking at the
data, it remains unclear whether any chosen measure actually captures
relevant domain information. As a direct consequence, obtaining an
analysis result does not automatically imply an insight into the domain.
Yet, the semantic interpretation of distance measures is rarely discussed
explicitly in visualization applications.

Reason: For most users, closeness implies similarity (user context)
but distances are semantically ambiguous because they only encode the
information that some data items might be closer to each other than
others but neither why they are considered closer or more similar nor
what this means for their interpretation in the domain context.

Solution: This problem can be addressed by inferring a similarity
definition from the domain context. Sometimes, such measures can
be directly postulated. Where this is not possible, one can sample
another set of data from the original domain and have domain experts
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estimate the similarity between the items in this data subset. Such
measures can also be multi-dimensional in order to emphasize different
characteristics for different portions of the data. This shift of emphasis
can, for example, be achieved by a convex combination of dynamic
weights for the measures’ components.

4.3 Missing Differentiation

It is a common problem that distance and similarity measures combine
multiple dimensions without regarding the units they represent. For
incompatible units, the summary of features implied by the distance or
similarity measure introduces ambiguity to the interpretation.

Reason: Again, closeness implies similarity for most users. The
actual problem here is that distance measures tend to summarize in-
formation without a clear reference to its origin. Even if the problem
of different scales and variances is solved, the data alone can still not
answer the question, whether the summarized information has a mean-
ingful interpretation in the domain context. This is to some extend
alleviated by combinations of multiple measures if each measure has
a clear interpretation. Yet, this is an important problem for practical
applications. If distance or similarity measures that have not been
deduced from the domain context are being applied, for example, to
cluster the data or to find patterns in the data, one cannot be certain that
these clusters or patterns are meaningful for the domain.

Solution: Practical visualization and visual analytics applications
to be applied to real-world data should never rely on fixed distance
or similarity definitions. Proper representations of similarities and
differences determining the comparison between different entities and
objects in the data need to be designed with careful consideration of
the analysis question and domain context rather than only by statistical
properties of the data features.

4.4 Missing Contrast

Another well-known issue with high-dimensional data is the curse of
dimensionality. Distance and similarity measures that are very intuitive
and descriptive in low dimensions, quickly lose their discriminating
power as the data attributes become more sparsely distributed in higher
dimensions [4,25]. Thereby, the search space is increased while the
contrast is being decreased which means that attributes become less
distinguishable. This effectively hides all non-redundant information-
carrying structure, rendering purely global analysis meaningless.

Problem: It is a common problem in real-world applications that
too many data dimensions are available where only a subset of these
dimensions is actually relevant for the analysis. Since this is a question
of the analysis context, the subset of relevant dimensions is not only
often unknown at the time the visualization is designed but can also
change frequently during the analysis process.

Solution: A direct approach to this problem is to attempt a semantic
dimension reduction based on the current analysis context. This can
be achieved, for example, by labelling the dimensions according to
their influence on certain concepts. Dimensions can then be filtered by
specifying the concepts that are relevant for the current analysis task.

4.5 Missing Artifact Awareness and Structure Heritage

A well-known problem in visualization are aliasing effects — phantom
patterns that are not present in the data but occur, for example, when
attempting to visualize a continuous field with insufficient sampling
density. Although this can be costly, the only way to “cleanly”FR elimi-
nate these artifacts is to increase the sampling rate. Similar applies to
the data acquisition process. The higher the precision, the more proper-
ties and patterns may be embedded in the data, and the fewer patterns in
the data occur that are acquisition artifacts (Shannon-Nyquist Theorem).
However, based solely on the data, it cannot be determined whether the
sampling density is sufficient and whether a certain structure is inherent
to the domain or introduced by the acquisition process, or both.
Reason: Data is always just a sample of the actual domain. The
data context can thus never completely reflect the domain context.
Solution: The aim should be to ascertain that the data sample is
representative for the investigated part of the domain. If this is not
possible, the only thing that can be done is to inform the user that

findings made in the data may result from flawed sampling. Because
data cannot be verified against itself, it is impossible to resolve this
problem from within the data context. Therefore, before a pattern or
structure observed in the data can be considered for reasoning about
the domain, one must attempt to falsify its existence by testing whether
it is also observable in the domain.
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Fig. 2. What does the 4 say? Considering any units, the 4 could be
interpreted as a length or an area. Just having the 4 as plain data, the
true nature of it remains ambiguous.

4.6 Missing Scale and Unit Invariance

The choice of units and scales is a degree of freedom [18,36]. The
respective design decisions are usually made with respect to the general
context, including aspects such as cultural heritage, best practice, or
personal experience. Scaling can cause apparent correlations to appear
in the data where actually there are none. Figures 1 and 2 illustrate this
problem. The effect can actually be achieved quite easily by proper data
manipulations [27]. Especially for complex high-dimensional systems,
there is a risk of implying apparent but actually non-present correla-
tions in the visualization [62]. Perhaps even worse, the application
of measures without proper respect to the units they operate on might
imply information-carrying structure in the visualization where there
actually is none and thus yield misinterpretations.

Reason: The correct choice of units and scales is not encoded in the
data but instead depends on the analysis and domain contexts.

Solution: The analysis context and the domain context determine
whether the user needs to study local or global patterns in the data. This
information should be leveraged to try to assess proper scaling and
units prior to the analysis. The analysis context can also provide proper
guidance for different paths for semantic zooming into the data.

4.7 Missing Precision

A common source for uncertainty in the data is the limit of precision
of data measurements. By the nature of this kind of uncertainty, the
values of variables and parameters are only known to be somewhere
within a certain interval but are not known exactly. As a consequence,
effects like the surpassing of thresholds may occur slightly sooner or
later than suggested by the data. Yet, no matter where exactly within
the uncertainty interval an event occurs, its interpretation is the same.
As long as all values within the intervals’ boundaries show the same
qualitative behavior, a single or few representatives are sufficient to
completely describe the observation, capturing all relevant qualitative
information. Different interpretations thus specify equivalence classes
into which the different possible outcomes of the uncertain data analy-
sis can be grouped. From a qualitative perspective, measurement error
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and tolerance only become relevant if they indicate multiple alternative
interpretations. Note that this also applies to the kind of uncertainty
observed in ensemble visualization. Although the details about the pa-
rameter values might vary, the ground truth — the observable outcomes
of the experiment — remains unchanged.

As an example, consider the worst, average, and best case of the
path of an asteroid crossing the course of Earth. Such data is typically
generated from an ensemble of simulations with different parameters
based on measurements that are imprecise to a certain degree. The three
trajectories can be depicted as simple lines as long as no additional
uncertainty is involved. Qualitatively, the line will cross the Earth’s
course in all cases. The uncertainty only needs to be made explicit if
the intervals indicate that a collision cannot be ruled out. Even then,
depicting the uncertainty would only be necessary close to where a
collision would occur. For the rest of the asteroid’s path, the uncertainty
does not add information relevant for the potential collision event.

Reason: The data context does allow to compute uncertainties but
does not contain interpretations of possible outcomes. For practical
applications, the relevant point for understanding a problem or mak-
ing a decision is usually not the uncertainty itself but the different
consequences this uncertainty might imply.

Solutions: To address this problem, the relevant possible outcomes
(domain context) can be assessed prior to the analysis. Domain experts
can be interviewed to obtain (fuzzy) criteria under which the respective
outcomes (might) occur. The visualization design can subsequently be
adapted to determine whether these criteria are met. In all cases, the
view should concentrate on the details of the possible outcomes rather
than on the details of the uncertainty.

4.8 Missing Reliability

Incomplete or erroneous input data can be considered to introduce
uncertainty in the missing or wrong entries taking the form of local
discontinuities or holes in the data. Especially if this problem only
affects a single dimension in a vector, ignoring the whole vector one
might lose important information. On the other hand, filling the hole
or replacing an obviously erroneous value introduces an estimation
error. Many algorithms are only stable if there are no missing data
entries. The uncertainty here results from the problem that, if the exact
values are not known, an estimation can be arbitrarily wrong. While
the assumptions being made to generate the estimation typically yield
sound results, these results cannot be trusted with perfect confidence,
especially where sampling is sparse. At the same time, it is hard
to estimate the potential error if there is no additional information
available to verify the estimation. As a consequence of this uncertainty,
the results obtained from analysis are unreliable if conclusions are
drawn from within these regions.

Reason: Flawed data neither contains the information that it is
flawed, nor why it is flawed or how to properly compensate for it. Yet,
in practice, data almost always has to be cleaned prior to analysis.

Solution: Sometimes, the corrections are quite obvious (e.g. outliers
that provide their height in meters instead of centimeters) but proper
choice of a correction often requires domain knowledge. Simply dis-
carding a flawed data entry might also not always be a good choice.
For example, analysis algorithms might require a constant sampling
rate. Flaws in the data also are not always simple to solve. For exam-
ple, there are measurement processes that tend to be biased due to the
temperature of a probe which, however, necessarily increases during
the measurement process. Therefore, the measurement is conducted in
intervals with different probes which either disrupts the time-line, or
results in a distortion pattern based on the systematic error of unknown
quantity. For example, where one would expect a linear graph, the
probe data might deliver a piece-wise exponential plot. It is necessary
to discuss such effects with domain experts as their experience (user
context) and knowledge (domain context) determine how they will deal
with such an observation during analysis.

4.9 Applying the Principles

Let us apply the four principles introduced above to the last example
to show how they can support the assessment how well a visualization

does or does not support its users in obtaining specific insights.5!

The problem of missing reliability is not directly concerned with
displaying information but rather with the effect of data sampling
artifacts on what is to be seen in the display. The resulting visualization
artifacts are never valid domain observations and should therefore
be highlighted as such. In the above examples, a notification of the
systematic deviations as part of the visualization’s legend would be
a comprehensible and sufficiently precise solution to establish this
awareness. Discussing the actual expected shape of the displayed
information with domain experts also allows to inform the viewer about
how the distortion is to be interpreted correctly.S!

The same kind of discussion can inform the designer what should not
be done: It is in general a bad idea to attempt to “visually correct”™R sys-
tematic measurement errors. First, displaying only the “correction”'®
without the original data will confuse viewers who are aware of the
systematic error and therefore expect to see the corresponding pattern
in the visualization. This renders the “corrected”FR display even less
comprehensible than the original one. Moreover, the “corrections”™®
cannot be validated against the data due to the exact same problems that
motivated their computation in the first place. Hence, there is no way
to guarantee their validity. As a consequence, there is also no gain in
semantic precision. Indeed, even if it does reduce the numerical error, a
viewer used to working with the original pattern might even find it more
difficult to interpret the “correction” ™8 Therefore, visually correcting
the patterns of systematic measurement error without referencing the
original data also decreases the clarity of the display’s interpretation.S!

5 BRIDGING LEVELS OF CONTEXT

The above discussion shows that purely quantitative evaluation and
reasoning provides us with insight about the visualization or about the
data but is unlikely to reveal insight about the domain without further
interpretation with respect to the different levels of context. Insights
into the data cannot be verified against the data itself. Note that this
is not specific to qualitative visual analysis but actually a problem
inherent to data analysis in general. The fundamental truth of any
model obtained from data analysis can never be reflected from within
the model. Before observations can become domain insights, they have
to be mapped back into the domain and need to be reflected within the
domain context. This reflection can either be explicit or abstract and
formal but is essential for obtaining insight into the domain.

The solutions we propose for the different limitations of purely
quantitative analysis show that distinguishing the several levels of
context and their respective contribution to the interpretation can be
leveraged to improve visualizations to better suit the requirements of the
specific application. We therefore promote this to a general principle
of qualitative visual analysis:

The Inside-Outside Principle of Qualitative Visual Analysis
For the extraction of meaningful information from data, it is necessary
to consider both the information to be found or computed inside the
data context and the influence of the user context, analysis context, and
domain context on how this information is being interpreted.

The interrelations between these different levels of context are illus-
trated in Figure 3. The traditional approach to the analysis of observa-
tions (purple arrows) analyzes them either by quantitative means or by
qualitative reasoning towards a conceptual model explaining the obser-
vation. This conceptual model combines knowledge from the domain
context, the analysis context, and the user context. Quantitative data
analysis (green arrows) yields descriptive models for the data rather
than for the observations from which the data have been sampled. To
be considered for analytical reasoning, these models therefore have to
be interpreted and mapped to the conceptual model. Users can obtain
findings from analytical reasoning about the conceptual model (red
arrows). However, these findings cannot be validated against the model
they have been derived from and thus have to be confirmed by vali-
dation against external domain knowledge (blue arrows). Only upon
verification can the findings be considered confirmed and only upon
confirmation can they become insights. Qualitative visual analysis sup-
ports this process by establishing a connection between the conceptual
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model outside and the descriptive model inside the data context.S6
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Fig. 3. Data analysis and context. Purely data-centric analysis (green)
can only reveal insight into the visualization or into the data. Obtaining
more sophisticated insights requires mapping the available information
to a conceptual model which a user applies for reasoning. This model
combines knowledge from the analysis context (purple), the user context
(red), and the domain context (blue). Conclusions drawn from this reason-
ing can only be considered insights into the domain upon confirmation
by validation against the domain.

Studying the qualitative factors in visualization and visual data anal-
ysis also has strong implications for fundamental analysis questions.
In the following, we apply the inside-outside principle to discuss the
different levels of context involved with fundamental questions of vi-
sual analysis such as the questions of analytical focus, subjectivity, or
the emergence of insight. While the questions of analytical focus and
subjectivity are commonly known in the visualization community, we
include them as a proof of concept demonstrating how applying the
inside-outside principle yields feasible and sound solutions of which
some are common practice. Yet, the focus of our discussion is on the
emergence of insight.

5.1 Analytical Focus

Visualization commonly tends to concentrate on showing data features
regardless of the domain and analysis context. The decision whether
to concentrate on objects to be studied or on their features should
depend primarily on the analysis question. Otherwise, the visualization
renders it hard to draw conclusions about the actual objects of discourse.
Notice that this focus might change during the analysis process and the
visualization should adapt accordingly.

Reason: The question which objects to study and which of their
features to combine for better understanding is a matter of the analysis
context, not of the data context.

Solution: One can attempt to model the analysis context beforehand
in order to identify the representation that best supports the task. Casner
followed this approach to develop an automatic visualization design
system [8]. The analytical focus tends to change along with the progress
of the analysis. To compensate for these changes, it has been proposed
to reintegrate analytical findings into the data as meta information to
be leveraged to dynamically adapt the visualization [30].R2

5.2 Context-Sensitivity and Subjectivity of Interpretations

The interpretation of data is not absolute but bound to different levels
of context. Data analysis as it is performed today places the analyst
into one specific reality among multiple possible realities. Different
contexts create different realities. Consequently, the result of a specific
analysis is also not the only possible outcome.

As a simple example, consider a bar chart showing the calories of
certain dishes from which a diet is to be designed for some patient.

If the task is to evaluate which is the best dish for the patient, the
choice will be different for a patient suffering from obesity than for a
patient suffering from starvation, even if though the data on the dishes
is exactly the same. In this example, the same data (calories) is to be
analyzed within the same domain (diets) for different subjects (patients).
The respective patient’s conditions shape the analysis context.

In the next example, we keep the data and the analysis task un-
changed but only add details about different possible domain contexts
after the analysis setup has been specified. Consider a data set of
performance values measured for a number of entities capable of per-
forming some task. In this example, a certain percentage of entities
performs significantly less than the others. The available options are
a relatively low cost solution removing the weak performing entities
and replacing them by the other type or to apply costly measures to
attempt to increase the performance of the weaker group. Given only
this information without further context, the solution might appear to
be quite straight forward. As a first domain, let us assume a number of
machines in a production complex. For this case, replacement might
actually be a good solution. Let us now change the context and let
the exact same percentages be measured for the workers rather than
the machines. The decision now is likely to be entirely different even
though the data is exactly the same.

Another major problem here is the inherent subjectivity of data
analysis. Empirical user studies show that domain knowledge has a
strong impact on how analysts interact with visualizations and on the
results they report. It has been found that more experienced analysts
tend to provide more in-depth reports in which they include their own
knowledge and conclusions while the reports of novice users would
tend to concentrate on what can be read off directly from the data [29].
This is not a result of an ambiguity in the graphical representation but
rather a consequence of differing interests, professions, and experiences
between the individual analysts and thus different user contexts.

Reason: Human analysis relies heavily on the user context which
can of course not be reflected in the data context. Furthermore, all
kinds of analysis, whether automatic or human, naturally also depends
on the analysis context.

Solution: Although it is admittedly hard to assess the user context,
it should at least be tried. Especially where knowledge is concerned,
this can be done e.g. by asking an appropriate (analysis context!)
set of test questions or simply by asking users to estimate their own
competence. Regarding the analysis context, designers should be sure
to assess the exact task beforehand and to design the visualization
towards the analysis task rather than only towards what seems to reflect
the data well. Fortunately, designing visualization towards analysis
tasks is established good practice in visualization and is a typical step
of modern visualization application or design studies.

5.3 Contingency, Coherence and Insight Emergence

Contingency of information as a qualitative attribute is not necessarily
reflected in the data context. Figure 4 shows an example of such a
case. Although the images have been transformed until the data alone
does not allow recognizing the faces as such, the lack of contingency is
compensated by human perception’s closure capability.

The example illustrates that insight is not an object or other entity
in the data that can be mined or otherwise extracted. Instead, rather
than being a compound of the displayed data, insight emerges from the
viewer’s understanding of the perceived objects and the interpretation of
their appearance and arrangement. Emergent properties cannot be found
in quantitative properties of the data but instead require a correlation
of the displayed information with a coherent structure in the viewer’s
conceptual model of the data, analysis, and domain context. Reasoning
about the data in order to infer complex information with respect to the
additional levels of context goes beyond what is explicitly displayed or
measured. Hence, redundancy, information entropy or other statistical
quantitative estimates can only capture actual contingency.

Coherent structures in the data indicate the contingency of implica-
tions or dependencies. Patterns of this kind are typically not highlighted
explicitly in the visualization, especially if they are not known or even
expected before the analysis starts. Encoding such structures thus re-
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Fig. 4. Example data from Mooney’s visual closure experiment [37]. The
pictures have been manipulated until a viewer without knowledge about
characteristics of human facial expressions cannot identify the shapes
clearly as faces. Mooney’s experiment shows that viewers are capable
of mapping their mental image of faces to the shapes, enabling them to
correctly determine estimates of age, sex, and even expressed emotion.
Contingency of information in visual data analysis is thus not limited by
the actual display but rather by the viewer’s ability to map the outside
knowledge about possible interpretations to the perceived structures.

quires qualitative considerations, connecting the data context and the
applied scaling to the available domain knowledge in order to better
support the interpretation of observed patterns.

This becomes even harder if the observed data is contingent in the
fact that something is absent rather than present. Consider the numbers
14, 142, 407, 43, 24. What do they have in common? Most readers will
easily recognize the common feature to be that every number in this
sequence contains the digit 4. Now, was it the defining commonality
of the sequence 123, 35, 5, 33, 72, 92, 085, 123, 4, 378, 3? For most
readers, this question will be much harder to solve. The answer is that
none of these numbers contains the digit 6, while all other digits are
present. This phenomenon is called the feature positive effect [47]. It
states that recognizing absence as a contingent property is deliberately
harder than finding commonalities between observations based on the
features that are present and thus directly recognizable, especially if
one is not trained in identifying absence as a property. Interestingly,
the property causing the effect again is an emergent property as it can
only be found by matching the fact that something is not there to the
corresponding structure in the analyst’s mind. Due to the positivist
nature of automatic pattern recognition and similar techniques, the
identification of absence of a feature as defining property for a class
of elements will in most cases not be achieved by automatic analysis
relying purely on quantitative considerations.

Reason: Even if an automatic method is able to recognize a pattern
in the data based on statistical or other quantitative measures, the
interpretation of this pattern’s relevance remains with the user. This
means that the contingency of information in a data visualization relies
on the user’s interpretation and therefore is not self-evident. Hence,
contingency of interpreted information cannot be proven from within
the data context but requires at least the consideration of the user
context regarding the ability to detect and interpret the information
correctly. As a direct consequence, the same holds for the identification
of coherent structures in the display although this additionally involves
the user’s domain knowledge. Insights that are available via read-off are
immediate by nature. These insights typically shape a user’s model of
the visualization (insight into the visualization), or a user’s idea about
the data (insight into the data). An analyst attempting to reason about
the domain based on the data will gradually accumulate findings and
verify hypotheses. During this emergence phase, the actual insight is not
yet stable — it is being shaped during the process. This is also accounted
for by the experiments of Ishack et al. who remark that, according to
their findings, insight is neither generated in the visualization nor in the
analyst’s mind but is being shaped through the interplay of the analyst’s
reasoning and the visualization’s depiction [29].

Solution: Supporting the reasoning process requires an in-depth
analysis of all levels of context and their interrelation in the application
at hand. User studies have shown that visualization users tend to apply
certain standard strategies, even if the visualization does not optimally
support them [42]. Knowledge about these strategies can support the
design of more efficient analysis workflows. Although this involves a
detailed analysis of all levels of context and might therefore become a
costly endeavour, it is worth the effort: For example, it has been found

that providing users with widgets containing annotation information for
relevant data features can support them in the analysis process [55]. The
ultimate goal in this direction would probably be the development of a
tool that allows analysts to (partially) externalize their mental models
and to leverage those externalizations to interactively evaluate the data
and to support reshaping the externalized model.

6 DISCUSSION AND IMPLICATIONS FOR FUTURE WORK

In the above discussion, we critically review the dominant data-centric
perspective to visual data analysis with respect to its capability to
provide insight into the investigated domain. We show how a number
of limitations inherent to this data-centric perspective can be alleviated
by conclusions drawn from discussing the visual data analysis process
from a broader perspective. Towards a conclusion, we summarize our
findings and discuss their implications for visualization applications.

From the discussion in Section 4, we learn that it cannot be taken for
granted that findings observed in the data or in a visualization are auto-
matically relevant for the domain. Consequently, in order to allow to
confirm their validity and relevance, visualization should offer means to
validate findings against the domain. Our discussion also suggests that
the analysis process can benefit from attempts to strengthen the connec-
tion between the domain and the data by integrating domain knowledge
into the display. For insight about the visualization, the source of such
knowledge is the designers’ intention how the visualization is to be
used. Insight about the data relies on information from analytical data
processing. Insight into the domain can be supported by incorporating
domain knowledge that is usually obtained from a liaison with domain
experts. From these observations, we conclude that insight that can
be obtained during the process of visual data analysistR is already
present in the combination of the different levels of context involved.
Visualization can offer an interface to access the additional information
to be gathered from the different levels of context. Hence, it should not
only be designed to optimally represent the data but also to o]zntimally
support its users in reasoning about the data and the domain.S

To achieve this, the discussions about visualization applications have
to clearly point out how exactly the users are meant to obtain insights.
In order to verify these mechanisms, evaluation techniques have to be
developed that allow to capture and investigate analytical provenance
and to compare this provenance between different users. Research in
visualization design should attempt to identify novel techniques and
approaches for supporting the users in validating findings they observe
against the domain. Theoretical research needs to study the principles
underlying the formation of insights in order to support reasoning about
how a visualization can best support this process. For example, research
in this direction could study the interpretations translating the graphical
representation into structures the viewer can reason about.5!

We introduce the concept of qualitative visual analysis as a concep-
tual framework to structure the discussion of the qualitative consider-
ations contributing to a holistic treatment of the analysis process. In
Section 4, we apply this concept to explain how a viewer is expected to
obtain insights from the solutions we propose for the different problems
discussed there. Our discussion shows that our four principles in their
current form are applicable to analyse approaches for visualization
applications in order to discuss whether they support an analysis from
a qualitative perspective. We therefore expect that qualitative visual
analysis can serve as a common conceptual framework ! to structure
and align the results obtained from the different directions of further
research we point out above.5*

7 CONCLUSION

In this paper, we critically review the data-centric perspective on data
analysis currently predominant in visualization as a field of research.
We identify a number of limitations common in practical applications of
visualization and show how they can be alleviated leveraging qualitative
considerations like user experience or domain knowledge. To structure
this discussion, we introduce the concept of qualitative visual analysis

"metaphorically speaking: “why we should not ignore what is not in the
numbers”FR
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which we apply to discuss the influence of different levels of context
on the analysis process. For visualization researchers, our discussion
contributes the understanding of the emergent nature of insight to be
obtained during the process of visual data analysistR. For practitioners,
our examples demonstrate how qualitative considerations can establish
a closer connection between the visualization and the domain.5*
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